Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-Di-*tert*-butyl-2,2',3,3',4,4',5,5'-octaethyl-1,1'-bistannole

Takuya Kuwabara and Masaichi Saito*

Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Saitama-city, Saitama 338-8570 Japan Correspondence e-mail: masaichi@chem.saitama-u.ac.jp

Received 31 May 2011; accepted 14 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.017; wR factor = 0.043; data-to-parameter ratio = 22.6.

The title compound, $[Sn_2(C_4H_9)_2(C_{12}H_{20})_2]$, has two 1stannacyclopentadiene skeletons related by inversion symmetry located at the mid-point of the Sn-Sn bond [2.7682 (2) Å]. Thus, the asymmetric unit comprises one halfmolecule. The planarity of the stannacyclopentadiene ring is illustrated by the dihedral angle of 0.3 (1)°, defined by the C₄ and C-Sn-C planes. To avoid steric repulsion, the two stannole rings are oriented in an *anti* fashion through the Sn-Sn bond. These structural features are similar to those of other bistannoles.

Related literature

For the synthesis and X-ray diffraction analysis of bi(1,1stannole)s whose carbon atoms of the five-membered rings have phenyl groups, see: Saito *et al.* (2002, 2005). For related literature on bi-, oligo- and poly-(1,1-metallole)s, see: Haga *et al.* (2008); Kanno *et al.* (1998); Kim & Woo (2002); Saito & Yoshioka (2005); Saito *et al.* (2010); Sohn *et al.* (1999, 2003); Yamaguchi & Tamao (1998); Yamaguchi *et al.* (1997, 1999).

Experimental

Crystal data $[Sn_2(C_4H_9)_2(C_{12}H_{20})_2]$ $M_r = 680.20$ Monoclinic, $P2_1/n$ a = 8.7161 (5) Å

b = 16.5999 (9) Å c = 11.7913 (6) Å $\beta = 100.827 (1)^{\circ}$ $V = 1675.67 (16) \text{ Å}^{3}$

Z = 2Mo $K\alpha$ radiation $\mu = 1.51 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector	9015 measured reflections
diffractometer	3636 independent reflections
Absorption correction: multi-scan	3387 reflections with $I > 2\sigma(I)$
(<i>XPREP</i> ; Bruker, 2008)	$R_{\rm int} = 0.017$
$T_{\min} = 0.835, T_{\max} = 0.927$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.017$ 161 parameters $wR(F^2) = 0.043$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.43$ e Å $^{-3}$ 3636 reflections $\Delta \rho_{min} = -0.42$ e Å $^{-3}$

Table 1Selected geometric parameters (Å, $^{\circ}$).

Sn1-C1	2.1416 (15)	Sn1-C5	2.1906 (16)
Sn1-C4	2.1475 (16)		
C1-Sn1-C4	83.75 (6)		

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XSHELL* (Bruker, 2008); software used to prepare material for publication: *XCIF* (Bruker, 2008).

This work was partially supported by Grant-in-Aids for Scientific Research (B) (No. 22350015 to MS) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. MS acknowledges a research grant from Mitsubishi Foundation. TK acknowledges the Sasakawa Scientific Research Grant from the Japan Science Society

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2332).

References

- Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haga, R., Saito, M. & Yoshioka, M. (2008). Chem. Eur. J. 14, 4068-4073.
- Kanno, K., Ichinohe, M., Kabuto, C. & Kira, M. (1998). *Chem. Lett.* **27**, 99–100. Kim, B.-H. & Woo, H.-G. (2002). *Organometallics*, **21**, 2796–2798.
- Saito, M., Haga, R. & Yoshioka, M. (2002). Chem. Commun. pp. 1002–1003.
- Saito, M., Haga, R. & Yoshioka, M. (2005). Eur. J. Inorg. Chem. pp. 3750–3755. Saito, M., Kuwabara, T., Kambayashi, C., Yoshioka, M., Ishimura, K. &
- Nagase, S. (2010). Chem. Lett. **39**, 700–701. Saito, M. & Yoshioka, M. (2005). Coord. Chem. Rev. **249**, 765–780.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sohn, H., Huddleston, R., Powell, D. R. & West, R. (1999). J. Am. Chem. Soc. 121, 2935–2936.
- Sohn, H., Sailor, M. J., Magde, D. & Trogler, W. C. (2003). J. Am. Chem. Soc. 125, 3821–3830.
- Yamaguchi, S., Jin, R.-Z. & Tamao, K. (1997). Organometallics, 16, 2486–2488.Yamaguchi, S., Jin, R.-Z. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937–2938.
- Yamaguchi, S. & Tamao, K. (1998). J. Chem. Soc. Dalton Trans. pp. 3693-3702.

 $0.25 \times 0.10 \times 0.05 \text{ mm}$

T = 100 K

Acta Cryst. (2011). E67, m949 [doi:10.1107/S1600536811022951]

1,1'-Di-tert-butyl-2,2',3,3',4,4',5,5'-octaethyl-1,1'-bistannole

T. Kuwabara and M. Saito

Comment

The group 14 metalloles has received much attention as good precursors of their polymers that reveal interesting optical properties (Yamaguchi *et al.*, 1998; Haga *et al.*, 2008) as well as their anion species, which are heavier congeners of the cyclopentadienyl anion (Saito *et al.*, 2005). After the synthesis of several oligo(1,1-silole)s and poly(1,1-silole)s (Yamaguchi *et al.*, 1997, 1999); Kanno *et al.*, 1998; Sohn *et al.*, 1999), they have been used as building blocks of organic electroluminescent devices (Kim & Woo (2002)). Poly(1,1-germole)s have also been synthesized (Sohn *et al.*, 2003). In contrast, as for tin analogues, only a few reports on the synthesis of oligo(1,1-stannole)s have appeared, so far (Haga *et al.*, 2008). We report herein the molecular structure of the title compound, which is a novel bi(1,1-stannole) bearing ethyl groups on the carbon atoms of the five-membered rings.

The X-ray diffraction analysis reveals that the title compound, bis(1-*tert*-butyl-2,3,4,5-tetraethylstannacyclopentadienyl) (I), has two planar five-membered rings with C–C bond alternations. The molecule is centrosymmetric with an inversion center in the middle of Sn–Sn bond, and hence a half moiety of the molecule was refined. The two stannole rings are oriented in an *anti* fashion through the Sn–Sn bond to avoid steric repulsion. The Sn–Sn bond length of 2.7689 (2) Å is in a normal range of the corresponding single bond, as was observed in other bi(1,1-stannole)s (2.7844 (7) and 2.7822 (7) Å (Saito *et al.*, 2002, 2005). The structural features of the title compound are therefore quite similar to those of other bi(1,1-stannole)s that have electronically neutral tin centers, and substituents on the ring carbon atoms little affect the structural features of bi(1,1-stannole)s.

Experimental

A diethyl ether solution (0.55 mL) of *tert*-butyl chloride (0.94 *M*, 0.52 mmol) was added to a diethyl ether solution (7 mL) of 2,2',3,3',4,4',5,5'-octaethyl-1,1'-dilithiobistannole (Saito *et al.*, 2010) (118.8 mg, 0.203 mmol) at room temperature, and the mixture was stirred for 3 h. After removal of volatile substances, the residue was degassed by freeze-pump-thaw cycles and sealed. In a glovebox, materials insoluble in hexane were removed by filtration and the filtrate was concentrated to provide a crude product. Recrystallisation of the crude product from diethyl ether afforded colourless crystals of bis(1-*tert*-butyl-2,3,4,5-tetraethylstannacyclopentadienyl) (107.7 mg, 0.154 mmol, 76%). (1) ¹H NMR (C₆D₆, 400 MHz) δ 1.02 (t, *J* = 7 Hz, 12H), 1.19 (t, *J* = 7 Hz, 12H), 1.40(s, *J*_{Sn-H} = 73 Hz, 18H), 2.33(q, *J* = 7 Hz, 8H), 2.41–2.60(m, 8H); ¹³C NMR (101 MHz, *C*₆D₆) δ 18.44 (q, *J*_{Sn-C} = 13 Hz), 22.61 (t, *J*_{Sn-C} = 48 Hz), 26.85 (t, *J*_{Sn-C} = 54 Hz), 30.71 (s, *J*_{Sn-C} = 22, 314, 328 Hz), 32.54 (*t*), 145.74 (s, *J*_{Sn-C} = 26, 287, 301 Hz), 152.92 (s, *J*_{Sn-C} = 21, 63 Hz); ¹¹⁹Sn NMR (186 MHz, C₆D₆) δ -68.8 (*J*_{Sn-C} = 301 Hz, *J*_{Sn-Sn} = 948 Hz).

Refinement

All H atoms were positionated geometrically, with C–H 0.96 and 0.97 A for methyl and methylene H atoms, and constrated to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$ for methyl and methylene H atoms, respectively.

Figures

Fig. 1. The molecular structure of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are omitted for clarity. The complete molecule is generated by the symmetry operation: -x, -y+2, -z+1.

Fig. 2. The side view of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are omitted for clarity.

1,1'-Di-tert-butyl-2,2',3,3',4,4',5,5'-octaethyl-1,1'-bistannole

Crystal data
$[\mathrm{Sn}_2(\mathrm{C}_4\mathrm{H}_9)_2(\mathrm{C}_{12}\mathrm{H}_{20})_2]$
$M_r = 680.20$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.7161 (5) Å
<i>b</i> = 16.5999 (9) Å
c = 11.7913 (6) Å
$\beta = 100.827 (1)^{\circ}$

F(000) = 700
$D_{\rm x} = 1.348 {\rm Mg m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6469 reflections
$\theta = 2.5 - 28.1^{\circ}$
$\mu = 1.51 \text{ mm}^{-1}$
T = 100 K
Cube, colourless
$0.25\times0.10\times0.05~mm$

Data collection

Z = 2

 $V = 1675.67 (16) \text{ Å}^3$

Bruker APEXII CCD area-detector diffractometer	3636 independent reflections
Radiation source: Bruker TXS fine-focus rotating an- ode	3387 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.017$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ϕ and ω scans	$h = -11 \rightarrow 9$
Absorption correction: multi-scan (<i>XPREP</i> ; Bruker, 2008)	$k = -21 \rightarrow 21$
$T_{\min} = 0.835, T_{\max} = 0.927$	$l = -14 \rightarrow 12$

9015 measured reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.017$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.043$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 0.7365P]$ where $P = (F_o^2 + 2F_c^2)/3$
3636 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
161 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. (SADABS; Bruker, 2008)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.025172 (11)	0.980800 (6)	0.390739 (8)	0.01472 (4)
C1	0.08418 (18)	1.07858 (9)	0.28847 (13)	0.0166 (3)
C2	-0.03317 (18)	1.08829 (9)	0.19728 (13)	0.0165 (3)
C3	-0.17491 (18)	1.03462 (9)	0.18331 (13)	0.0166 (3)
C4	-0.18366 (18)	0.97554 (9)	0.26111 (14)	0.0174 (3)
C5	0.20071 (18)	0.88519 (10)	0.40268 (14)	0.0207 (3)
C6	0.2344 (3)	0.86861 (15)	0.28284 (18)	0.0494 (6)
H6A	0.2631	0.9179	0.2498	0.074*
H6B	0.1428	0.8468	0.2347	0.074*
H6C	0.3187	0.8307	0.2884	0.074*
C7	0.3492 (2)	0.91665 (13)	0.47898 (19)	0.0412 (5)
H7A	0.4319	0.8783	0.4801	0.062*
H7B	0.3311	0.9245	0.5560	0.062*
H7C	0.3781	0.9670	0.4489	0.062*
C8	0.1474 (3)	0.80959 (13)	0.4556 (3)	0.0577 (7)
H8A	0.0592	0.7872	0.4042	0.087*

H8B	0.1182	0.8226	0.5280	0.087*
H8C	0.2310	0.7710	0.4681	0.087*
С9	0.23347 (19)	1.12690 (10)	0.31206 (14)	0.0207 (3)
H9A	0.2443	1.1562	0.2428	0.025*
H9B	0.3215	1.0904	0.3308	0.025*
C10	0.2376 (2)	1.18665 (11)	0.41124 (15)	0.0285 (4)
H10A	0.1539	1.2247	0.3915	0.043*
H10B	0.3356	1.2147	0.4246	0.043*
H10C	0.2260	1.1581	0.4799	0.043*
C11	-0.02473 (19)	1.15157 (10)	0.10545 (13)	0.0213 (3)
H11A	0.0349	1.1974	0.1409	0.026*
H11B	-0.1294	1.1701	0.0735	0.026*
C12	0.0514 (2)	1.11894 (11)	0.00763 (14)	0.0276 (4)
H12A	0.1557	1.1013	0.0387	0.041*
H12B	0.0547	1.1607	-0.0482	0.041*
H12C	-0.0086	1.0744	-0.0289	0.041*
C13	-0.30873 (19)	1.05102 (10)	0.08346 (14)	0.0229 (3)
H13A	-0.3647	1.0012	0.0615	0.027*
H13B	-0.2668	1.0698	0.0176	0.027*
C14	-0.4225 (2)	1.11386 (11)	0.11409 (18)	0.0348 (4)
H14A	-0.4702	1.0938	0.1755	0.052*
H14B	-0.5018	1.1246	0.0475	0.052*
H14C	-0.3669	1.1627	0.1385	0.052*
C15	-0.32148 (19)	0.92105 (10)	0.26192 (15)	0.0230 (3)
H15A	-0.4082	0.9395	0.2037	0.028*
H15B	-0.3527	0.9253	0.3364	0.028*
C16	-0.2897 (2)	0.83329 (11)	0.23913 (18)	0.0337 (4)
H16A	-0.2663	0.8279	0.1631	0.051*
H16B	-0.3802	0.8017	0.2446	0.051*
H16C	-0.2024	0.8147	0.2952	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01341 (6)	0.01614 (6)	0.01448 (6)	0.00001 (4)	0.00225 (4)	0.00191 (4)
C1	0.0176 (7)	0.0170 (7)	0.0159 (7)	-0.0015 (6)	0.0052 (6)	-0.0001 (6)
C2	0.0193 (7)	0.0139 (7)	0.0172 (7)	0.0008 (6)	0.0058 (6)	-0.0002 (6)
C3	0.0149 (7)	0.0168 (7)	0.0175 (7)	0.0016 (6)	0.0014 (6)	-0.0027 (6)
C4	0.0141 (7)	0.0185 (7)	0.0194 (8)	-0.0002 (6)	0.0028 (6)	-0.0020 (6)
C5	0.0170 (8)	0.0210 (8)	0.0232 (8)	0.0027 (6)	0.0013 (6)	0.0000 (6)
C6	0.0559 (14)	0.0607 (15)	0.0314 (11)	0.0330 (12)	0.0074 (10)	-0.0069 (10)
C7	0.0230 (10)	0.0449 (12)	0.0498 (12)	0.0099 (8)	-0.0082 (8)	-0.0115 (10)
C8	0.0319 (12)	0.0326 (11)	0.112 (2)	0.0118 (9)	0.0221 (13)	0.0330 (13)
C9	0.0193 (8)	0.0216 (8)	0.0210 (8)	-0.0044 (6)	0.0036 (6)	0.0011 (6)
C10	0.0302 (10)	0.0268 (9)	0.0270 (9)	-0.0092 (7)	0.0015 (7)	-0.0042 (7)
C11	0.0240 (8)	0.0190 (8)	0.0203 (8)	-0.0009 (6)	0.0027 (6)	0.0041 (6)
C12	0.0343 (10)	0.0299 (9)	0.0195 (8)	-0.0047 (7)	0.0075 (7)	0.0035 (7)
C13	0.0210 (8)	0.0226 (8)	0.0222 (8)	-0.0001 (7)	-0.0030 (6)	0.0014 (7)

C14	0.0234 (9)	0.0293 (9)	0.0472 (12)	0.0069 (7)	-0.0054 (8)	-0.0003 (8)
C15	0.0178 (8)	0.0241 (8)	0.0268 (8)	-0.0037 (6)	0.0033 (6)	0.0017 (7)
C16	0.0355 (10)	0.0252 (9)	0.0433 (11)	-0.0132 (8)	0.0146 (9)	-0.0065 (8)
Geometric param	neters (Å, °)					
Sn1—C1		2.1416 (15)	С9—	-H9A	0.9	700
Sn1—C4		2.1475 (16)	С9—	-H9B	0.9	700
Sn1—C5		2.1906 (16)	C10-	-H10A	0.9	600
Sn1—Sn1 ⁱ		2.7682 (2)	C10-	-H10B	0.9	600
C1—C2		1.347 (2)	C10-	-H10C	0.9	600
C1—C9		1.509 (2)	C11-	C12	1.5	34 (2)
C2—C3		1.507 (2)	C11-	-H11A	0.9	700
C2-C11		1.520 (2)	C11-	-H11B	0.9	700
C3—C4		1.355 (2)	C12-	-H12A	0.9	600
C3—C13		1.518 (2)	C12-	-H12B	0.9	600
C4—C15		1.505 (2)	C12-	-H12C	0.9	600
C5—C8		1.513 (3)	C13-	C14	1.5	29 (2)
C5—C6		1.521 (3)	C13-	-H13A	0.9	700
С5—С7		1.523 (2)	C13-	-H13B	0.9	700
С6—Н6А		0.9600	C14-	-H14A	0.9	600
C6—H6B		0.9600	C14-	-H14B	0.9	600
С6—Н6С		0.9600	C14-	-H14C	0.9	600
C7—H7A		0.9600	C15-	C16	1.5	16 (2)
С7—Н7В		0.9600	C15-	-H15A	0.9	700
C7—H7C		0.9600	C15-	-H15B	0.9	700
C8—H8A		0.9600	C16-	-H16A	0.9	600
C8—H8B		0.9600	C16-	-H16B	0.9	600
C8—H8C		0.9600	C16-	-H16C	0.9	600
C9—C10		1.529 (2)				
C1—Sn1—C4		83.75 (6)	C1—	-С9—Н9В	109	9.1
C1—Sn1—C5		110.28 (6)	C10-	—С9—Н9В	109	9.1
C4—Sn1—C5		120.31 (6)	H9A	—С9—Н9В	107	7.9
C1—Sn1—Sn1 ⁱ		116.51 (4)	С9—	-C10—H10A	109	9.5
C4—Sn1—Sn1 ⁱ		114.24 (4)	С9—	-C10—H10B	109	9.5
C5—Sn1—Sn1 ⁱ		109.75 (4)	H10A	A—C10—H10B	109	9.5
C2—C1—C9		125.63 (14)	С9—	-C10—H10C	109	9.5
C2-C1-Sn1		108.27 (11)	H104	А—С10—Н10С	109	9.5
C9—C1—Sn1		126.08 (11)	H10H	В—С10—Н10С	109	9.5
C1—C2—C3		120.03 (13)	C2—	-C11—C12	112	2.17 (14)
C1—C2—C11		121.33 (14)	C2—	-C11—H11A	109	9.2
C3—C2—C11		118.62 (13)	C12-		109	9.2
C4—C3—C2		120.22 (14)	C2—	-C11—H11B	109	9.2
C4—C3—C13		121.47 (14)	C12-		109	9.2
C2—C3—C13		118.26 (13)	H114	A—C11—H11B	107	7.9
C3—C4—C15		125.86 (15)	C11-		109	9.5
C3—C4—Sn1		107.73 (11)	C11-		109	9.5
C15—C4—Sn1		126.20 (11)	H12A—C12—H12B 109.5		9.5	

C8—C5—C6	111.14 (18)	C11—C12—H12C	109.5
C8—C5—C7	109.49 (17)	H12A—C12—H12C	109.5
C6—C5—C7	108.65 (17)	H12B—C12—H12C	109.5
C8—C5—Sn1	111.26 (12)	C3—C13—C14	112.16 (14)
C6—C5—Sn1	109.01 (12)	C3—C13—H13A	109.2
C7—C5—Sn1	107.17 (11)	C14—C13—H13A	109.2
С5—С6—Н6А	109.5	С3—С13—Н13В	109.2
С5—С6—Н6В	109.5	C14—C13—H13B	109.2
H6A—C6—H6B	109.5	H13A—C13—H13B	107.9
С5—С6—Н6С	109.5	C13—C14—H14A	109.5
Н6А—С6—Н6С	109.5	C13—C14—H14B	109.5
H6B—C6—H6C	109.5	H14A—C14—H14B	109.5
С5—С7—Н7А	109.5	C13—C14—H14C	109.5
С5—С7—Н7В	109.5	H14A—C14—H14C	109.5
Н7А—С7—Н7В	109.5	H14B—C14—H14C	109.5
С5—С7—Н7С	109.5	C4—C15—C16	113.80 (14)
H7A—C7—H7C	109.5	C4—C15—H15A	108.8
H7B—C7—H7C	109.5	C16-C15-H15A	108.8
С5—С8—Н8А	109.5	C4—C15—H15B	108.8
С5—С8—Н8В	109.5	C16—C15—H15B	108.8
H8A—C8—H8B	109.5	H15A—C15—H15B	107.7
С5—С8—Н8С	109.5	C15—C16—H16A	109.5
H8A—C8—H8C	109.5	C15—C16—H16B	109.5
H8B—C8—H8C	109.5	H16A—C16—H16B	109.5
C1—C9—C10	112.43 (13)	C15—C16—H16C	109.5
С1—С9—Н9А	109.1	H16A—C16—H16C	109.5
С10—С9—Н9А	109.1	H16B—C16—H16C	109.5
C			

Symmetry codes: (i) -x, -y+2, -z+1.

